解决方案
HOME
解决方案
正文内容
二维电子气 进展 二维电子气的高效自旋-电荷转换效应
发布时间 : 2024-11-24
作者 : 小编
访问数量 : 23
扫码分享至微信

进展 二维电子气的高效自旋-电荷转换效应

自旋流的产生、调控以及自旋流-电流的转换是自旋电子学研究的核心问题。在上世纪90年代,V. M. Edelstein 预言与二维体系电流传输方向相垂直的方向上会产生纯自旋流,即,Edelstein效应。与此相反,当自旋流被注入二维电子体系时,二维界面的Rashba效应可使电子发生与自旋取向有关的定向偏转,产生相应的电信号,这就是所谓的逆Edelstein效应。近年来人们在Rashba界面、二维材料以及拓扑材料表面态中均观察到由于Edelstein效应和逆Edelstein效应产生的高效的自旋流和电荷流相互转换。

氧化物二维电子气体系(LaAlO3/SrTiO3)是一个理想的Rashba界面,是实现自旋流和电荷流相互转化的理想载体。中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室孙继荣团队与北京大学韩伟教授合作,利用铁磁共振实现自旋泵浦的办法,在LaAlO3/SrTiO3界面观察到了自旋与电荷流之间的相互转化,其自旋信号可以持续到室温,并且可以利用门电压进行调控(Sci. Adv. 3, e1602312 (2017))。利用上述办法虽然观察到了自旋流与电荷流之间的相互转化,但这其中存在着两个问题一直困扰着研究人员,一是自旋泵浦效应存在着寄生信号,影响对真实信号的判断;二是自旋流在传输的过程中要穿过绝缘的LaAlO3层,极大地降低了自旋注入效率。

经过长时间探索,最近该团队成功得到了EuO/KTaO3磁性二维电子气 (Phys. Rev. Lett. 121, 116803 (2018))。这是首例由磁性绝缘体/高介电绝缘体构成的新型二维电子气。EuO是铁磁绝缘体,与KTaO3界面形成导电界面。由于EuO对于KTaO3界面的磁邻近诱导效应,EuO/KTaO3二维电子气显示了明显的铁磁特征。同时,由于磁性EuO与二维电子气直接接触,借助这一设计可以克服非磁性绝缘层的阻碍作用,实现从EuO到二维电子气的直接自旋流注入,并通过二维电子气的逆Edelstein效应实现自旋流–电荷流的转换。

最近,在孙继荣研究员指导下,博士研究生张洪瑞等人利用热自旋注入的办法,通过二维电子气的转换作用,成功实现了自旋流-电荷流的高效转化。具体实验过程是,首先在EuO中建立温度梯度,利用温度梯度驱动非平衡磁振子扩散,进而形成自旋流。由于EuO和二维电子气的密切接触,磁振子自旋流直接注入到KTaO3界面层的二维电子气中。由于界面的Rashba 效应,自旋注入引起电子动量不对称分布,从而产生电流输出。由于没有非磁性绝缘阻挡层,以及界面二维电子气的强Edelstein效应,自旋-电荷转换是高效的。简单的比较表明,在同样磁性层厚度下,低温下EuO/KTaO3二维电子气的自旋塞贝克系数是YIG/Pt异质结的19倍,而YIG/Pt是公认的最优自旋塞贝克体系。通过系统研究,他们还进一步确定了非平衡磁振子在EuO中的扩散长度为16 nm。

以往利用自旋泵浦对氧化物界面进行自旋注入,是通过在磁性层与二维电子气之间交换电子实现的,且中间间隔非磁性绝缘层。本研究中自旋流由EuO中非平衡磁振子的扩散形成,且直接注入到EuO/KTaO3界面,通过磁振子与界面电子的交换作用及自旋-电子动量锁定效应实现转换,因而是一种新的注入与转换方式。这一工作揭示了磁性二维电子气的新特性及氧化物自旋电子学研究的巨大潜力。

本工作中的样品制备与北京大学韩伟教授合作完成。

这一工作发表在Nano Letters上 (Nano Letters 19, 1605 (2019))。该工作得到了科技部、国家自然科学基金委项目和中国科学院重点项目的支持。

文章链接:https://pubs.acs.org.ccindex.cn/doi/pdf/10.1021/acs.nanolett.8b04509

图1. EuO/KTaO3界面的热自旋注入和逆Edelstein效应示意图。(a) 自旋塞贝克逆Edelstein效应的实验装置图。(b) Rashba型二维电子系统的能带结构。(c) 处于平衡状态和非平衡状态的费米面。

图2. EuO/KTaO3界面的自旋塞贝克逆Edelstein效应,其中EuO厚度是15 nm。(a) 左列是不同温度下热电电流随磁场的变化;水平列是不同加热功率下热电电流随磁场的变化。(b) 热电电流随样品温度的变化,加热功率是65 mW。(c) 热电电流随加热功率的变化,样品温度是10 K。

图3. 不同EuO厚度样品的自旋塞贝克逆Edelstein效应 (a) 不同EuO厚度样品热电电流随磁场的变化,测试温度是10K,施加的温度梯度是18.8 K/cm。(b) 热电电流随EuO厚度的变化。

图4. 自旋塞贝克系数随着EuO/KTaO3和YIG/Pt 异质结中磁性层厚度的变化,温度固定在10K,Pt的厚度在5~10 nm。

编辑:AI

近期热门文章Top10

↓ 点击标题即可查看 ↓

1. 物理定律告诉你,爱情的真相有多么残酷!

2. 玉皇大帝到底住在平流层还是对流层?

3. 玻璃球里的花纹是怎么弄进去的?看完童年之谜终于解开了

4. 不要模仿!把两颗葡萄一起放进微波炉 ,能烧得你家都没了

5. 仰望星空100年

6. 不知道这些,别说你看懂了《流浪地球》

7. 如何批量制造钻石

8. 杨-米尔斯理论说了啥?为什么说这是杨振宁超越他诺奖的贡献?

9. 怎么避免上厕所没有纸?看完这篇文章你就懂了

10. 牛顿棺材板压不住时,请祭出此物防身!

进展|能带填充状态对二维电子气Rashba自旋-轨道耦合的影响

由于电荷与轨道重构,强关联氧化物界面常常形成具有独特性质的第三相,其中最有意思的发现就是两个绝缘氧化物界面的高导电性二维电子气。与常规半导体二维电子气不同,界面势阱中的电子具有d电子特征,可以占据不同的d轨道,从而带来了一系列新特性例如二维超导电性以及磁性与超导电性共存等。

针对如何获得自旋极化二维电子气,如何实现对电子气的高效调控等问题,中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室孙继荣团队展开了系统深入的研究,先后发现光激发与栅极电压结合会产生协同效应,使栅极电压对界面电子气的调节效应强化了两个量级(Nat. Commun. 5, 5554 (2014))。随后,他们利用EuO对二维电子气的磁邻近效应,成功地在EuO/KTaO3界面获得了强磁性的自旋极化二维电子气 (Phys. Rev. Lett. 121, 116803 (2018))。

二维电子气研究的另外一个重要问题是电子气独有特性的调控,即,对称性破缺导致的Rashba 效应的调控,Rashba 效应也是通向电场对自旋过程调控的主要途径。Rashba场依赖于电子气的哪些特征参数,如何控制其变化,一直是研究者极为关心的问题。最近,在孙继荣研究员指导下,博士研究生张慧等深入研究了非晶-LaAlO3/KTaO3界面二维电子气,利用光电协同作用实现了对二维电子气费米能级的大范围调控,费米能级变化范围从 13 meV 到 488 meV,建立了Rashba自旋-轨道耦合参数和费米能级之间的定量关系,自旋扩散长度与能带填充状态之间的定量关系,揭示了能带填充状态对自旋输运过程的影响,得到了目前为止最大的自旋扩散距离(70nm)和最强的Rashba自旋-轨道耦合参数 (30 meV)。这一工作为进一步探索高性能二维电子体系提供了坚实基础,为d电子二维电子气体奇异物理效应的探索拓展了新空间。

该研究中密度泛函理论计算工作与物理所刘邦贵教授合作完成。

这一工作发表在ACS Nano (ACS Nano 13 , 609 (2019)) 上。该工作得到了科技部(2016YFA0300701,2017YFA0206300,2017YFA0303601,2018YFA0305704)、国家自然科学基金委 (11520101002,51590880,11674378)和中国科学院重点项目的支持。

文章链接

图一、磁场依赖的霍尔电阻。测量温度 5K, 磁场范围±9T,激光功率0-40 mW。(a) 对应最低费米能级的二维电子气。(d) 对应中间费米能级的二维电子气。(b 到 c) 相应的载流子浓度。(e-f) 利用典型的量载流子模型拟合得到的对应的电子迁移率。

图二、利用垂直样品表面磁场测得的磁电导,测量温度 5K。(a) 利用栅极电压调节费米能级。(b-c) 利用光激发调节费米能级。图中实线是根据理论公式拟合的结果,由此推导出Rashba自旋-轨道耦合参数。

图三、(a) 有效自旋轨道场合非弹性场。(b) 自旋近动进动距离与退相干长度。(c) Rashba 自旋劈裂能随载流子浓度(费米能级)的变化。

编辑:Major Tom

近期热门文章Top10

↓ 点击标题即可查看 ↓

1. 女生冬天穿那么少不冷吗?我找了个男生试了下......

2. 严肃科普:如何区分奥特曼

3. 人类花百年规划设计的铁路网,这些无脑生物26小时就搞定了

4. 2018 年最冷科学知识 Top 10

5. 一幅图读懂量子力学(Ⅳ)

6. Physics World 评选出2018年度十大科学突破

7. 昨晚,我在秋名山输给了一个沙发……

8. 假如有人告诉你这个世界的本质是弹簧,你愿意相信吗?

9. 磁铁可以只有一极吗?它或许能打开万物理论之门

10. 上坡要刹车; 下坡踩油门,关于怪坡你了解多少?

相关问答

可制造出一种使 电子 的运动限制在半导体的一个平面内( 二维 )...

[最佳回答](1)粒子由静止在电场中加速:qU=12mv2…(1)解得:U=mv22q…(2)(2)在图中纸面内取Oxy坐标(如图),原点在狭缝l处,x轴过缝1和缝3.粒子从缝1进入磁场,在洛...

半导体的禁带宽度大小对它的用途有何影响请举例说明

[回答]禁带宽度对于半导体器件性能的影响非常大,它直接决定着器件的耐压和最高工作温度;比如氮化镓禁带宽度很大,即便高温价带电子也很难吸收大于Eg的热辐...

gan未来发展?

GaN电力电子器件增速迅猛,未来市场空间巨大。预计到2025年GaN电力电子器件市场预计将超过15亿美元。其中在电源设备方面的市场应用占到了GaN电力电子器件市场...

请问迁移率指的是什么?

如果我们学过半导体器件物理的话,那么就知道,表征MOS器件性能有一个图,叫InversionQversuscarriermobility。什么意思呢?就是MOS器件的开启是靠栅电容耗...

量子跟纳米如何换算?它们之间有什么关系? - 187****3887 的回...

量子跟纳米无法直接换算,他们是两个不同的物理概念。量子化现象主要表现在微观物理世界,而纳米只是一个长度的度量单位。量子(quantum)是现代物理的...

二维 材料的特点?

二维材料,是指电子仅可在两个维度的纳米尺度(1-100nm)上自由运动(平面运动)的材料,如纳米薄膜、超晶格、量子阱。全力护的二维材料具有优异的物理化学特...

二维 材料能做哪些传感器?

自石墨烯发现以来,大量二维层状材料被相继发现.二维材料中载流子被限制在界面1nm空间内,使其对化学掺杂非常敏感,有望引起生物传感领域的技术变革.生物...

Ga2S3(硫化镓)是制作 二维 超薄半导体的材料之一.图Ⅰ、图Ⅱ分...

[最佳回答](1)原子中,核内质子数=核外电子数,图Ⅲ中x的数值是6.故填:6.(2)4个镓原子可以表示为4Ga;2个硫离子可以表示为2S2-.故填:4Ga;2S2-.(3)硫化镓是由两种...

三维空间霍尔效应是什么?

差...霍尔效应使用左手定则判断。在1879年被物理学家霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的电磁感应完全不同。当电流通过一...

exb是什么文件?

exb文件是CAXA二维绘图软件电子图板的数据文件。数据文件是在大容量复制操作中,将数据从向外大容量复制操作传输到向内大容量复制操作的文件。在SQLServer20...

 秦刚外长  谈笑靖 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部